Это статистический метод, используемый для классификации. Основная цель LDA — найти линейную комбинацию признаков, которая лучше всего разделяет пространство объектов на необходимое число классов.
Для LDA делаются некоторые ключевые предположения о данных: нормальное распределение признаков в каждом классе, однородность ковариационных матриц, независимость признаков.
Для нахождения гиперплоскости, которая оптимально делит пространство объектов, решается вспомогательная задача. Нужно найти ось, проекция на которую максимизирует отношение общей дисперсии выборки к сумме дисперсий внутри отдельных классов. Результатом работы алгоритма будет вектор, который является нормалью к искомой гиперплоскости.
Это статистический метод, используемый для классификации. Основная цель LDA — найти линейную комбинацию признаков, которая лучше всего разделяет пространство объектов на необходимое число классов.
Для LDA делаются некоторые ключевые предположения о данных: нормальное распределение признаков в каждом классе, однородность ковариационных матриц, независимость признаков.
Для нахождения гиперплоскости, которая оптимально делит пространство объектов, решается вспомогательная задача. Нужно найти ось, проекция на которую максимизирует отношение общей дисперсии выборки к сумме дисперсий внутри отдельных классов. Результатом работы алгоритма будет вектор, который является нормалью к искомой гиперплоскости.
#junior
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.
The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.
Библиотека собеса по Data Science | вопросы с собеседований from us